
THE CHEMISTRY OF PHENALENIUM SYSTEM XVII. 1) BENZO[cd]PYRENYL ANION

Ichiro Murata, Kagetoshi Yamamoto, and Osamu Hara

Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

(Received in Japan 20 April 1974; received in UK for publication 6 May 1974)

In our continuing studies on the chemistry of phenalenyl system (2) we have extended our attention to the higher benzolog of 2, benzo[cd]pyrenyl system (1). The benzo[cd]pyrenyl systems, cation (12), radical (1b) and anion (1c), are odd-alternant hydrocarbons possessing a NBMO which contains zero, one, and two electrons respectively² as in the case of 2.³⁾ The cation (1a) has

already been synthesized and examined the detailed chemical reactivity by Reid and Bonthrone.²⁾ Recently, the radical (<u>lb</u>) is also prepared and characterized by epr spectroscopy by Reddoch and Paskovich.⁴⁾ Although the generation of the anion (<u>lc</u>) from 6H-benzo[cd]pyrene (<u>3</u>: X=H) with sodium ethoxide was described in the literature by Jutz⁵⁾, none of the spectroscopic properties of <u>lc</u> have been reported to date. This paper presents evidence for the formation of <u>lc</u> and its visible and nmr spectra.

The parent hydrocarbon (3: X=H) was prepared from 6H-benzo[cd]pyrene-6-one⁶) by LiAlH₄-AlCl₃ reduction^{2,7)} as pale yellow plates of mp 121-128°C [Lit. 134°⁸⁾, 123-124°⁹⁾, and 124-130°²]. Treatment of (3: X=H) in THF-d₈ [distilled over LiAlH₄] with n-BuLi in n-hexane and ether at -78°C in vacuo gave a dark brown solution of lc in high yield. The solution can be quenched into D_2^0 to produce exclusively (3: X=D), m/e 241, δ 4.89 (bs, 1H), 7.4-7.8 (m, 10H). The visible spectrum of lc shows maxima at 460 nm (ϵ , 44,900), 490(13,000), 527(13,000), 574(3,320), 623 (3,770) and 679(5,250). The ϵ -values were estimated assuming quantitative conversion of 3 into 1c.

The 100 MHz nmr spectrum for <u>lc</u> recorded at 0°C is summarized in Table 1 together with that of the cation (<u>la</u>)¹⁰⁾, prepared from (<u>3</u>: X=H) with o-chloranil and 70% HClo₄ in CH₃CN²⁾. The first-order analysis of the signals is in full accord with the delocalized structure (<u>lc</u>) with C_{2v} -symmetry. For <u>lc</u> and <u>la</u> the assignment of H-1 and H-2 was made according to the calculated pi-electron density at their respective carbon atoms. The substantial up- and down-field shift of H-6 in <u>lc</u> and <u>la</u> is attributable to the largest negative (-0.2424 for <u>lc</u>) and positive charge density (+0.2424 for <u>la</u>) at C-6.

A plot of the nmr chemical shift (after correction for the ring current effects of the

	Cation la ^{a)}		Anion lc					
Posit	ion	Obs. Chem. Shift ^{b)}	Coupl. Const.	Obs. Chem. Shift ^{c)}	Ring Current Correct. ^{d)}	Correct. Chem. Shift	Charge Density	Coupl. Const.
l,	11	7.65	J _{1,2} =	6.47	1.05	5.42	0	J1.2=
2,	10	7.91	9.0 Hz	6.24	1.01	5.23	-0.0606	8.2 Hz
З,	9	8.37	^J 3,4 [∓]	5.53	0.94	4.59	-0.1364	J _{3,4} =
4,	8	7.56	J _{4,5} =	6.20	0.51	5.69	0	J4,5=
5,	7	8.39	7.8 Hz	5.63	1.02	4.61	-0.1364	7.5 Hz
	6	9.27		5.31	1.51	3.80	-0.2424	

Table 1. Proton Nmr Data of la and lc

a) Perchlorate. b) δ -Values were determined in CF₃COOH, relative to the CF₃COOH signal assumed to lie at δ 10.44 from TMS. c) δ -Values were determined in THF-d₈, relative to the low-field THF signal assumed to lie at δ 3.63 from TMS. d) The sum of ring current corrections for adjacent benzene rings by the simple point dipole approximation calculated by using the well-known formula¹¹, ($e^2a^2/2mc^2$) Σ R_i⁻³.

adjacent rings¹²⁾, see Table 1) of the protons of <u>lc</u> versus the Hückel charge density of the corresponding carbon atom provides a good straight line and the points for lithium phenalenide $(\underline{2c})^{13}$ (after correction for the ring current effects : 0.75 ppm for H-1,3,4,6,7,9 and 0.36 ppm for H-2,5,8) also fall almost exactly on this line. The excellent correlation between the ^lH nmr chemical shift and the Hückel charge density provides evidence that the negative charge resides on the alternate carbon atoms of the molecule <u>lc</u>.

- 1) For part XVI, see I. Murata, K. Nakasuji, and H. Kume, Tetrahedron Lett., 3405 (1973).
- 2) D. H. Reid and W. Bonthrone, J. Chem. Soc., 1965, 5920.
- 3) Cf. D. H. Reid, Quart. Revs., 19, 274 (1965).
- 4) A. H. Reddoch and D. H. Paskovich, Chem. Phys. Lett., 3, 351 (1969).
- 5) C. Jutz, R. Kirchlechner, and H-J. Seidel, <u>Chem. Ber</u>., <u>102</u>, 2301 (1969).
- H. Vollmann, H. Becker. M. Correll, and H. Streeck, <u>Justus Liebigs Ann. Chem</u>., <u>531</u>, 1 (1937);
 R. Scholl and K. Meyer, <u>Ber</u>., <u>69</u>, 152 (1936).
- 7) B. R. Brown and A. M. S. White, <u>J. Chem. Soc.</u>, <u>1957</u>, 3775.
- 8) E. Clar, "Polycyclic Hydrocarbon," Academic Press, London, 1964, p. 416.
- 9) A. W. Johnson, J. Org. Chem., 24, 833 (1959).
- 10) Reid and Bonthrone have been reported the nmr spectral data of benzo[cd]pyrenyl perchlorate as two groups of signals centered at δ 8.62 and 9.25. See ref. 2).
- J. A. Pople, W. G. Schneider, and H. J. Bernstein, High Resolution Nuclear Magnetic Resonance, McGraw-Hill, Inc. New York (1959), p. 180.
- 12) Cf. T. J. Katz, M. Yoshida, and L. C. Siew, <u>J. Amer. Chem.Soc</u>., <u>87</u>, 4516 (1965); T. J. Katz,
 V. Balogh, and J. Schulman, <u>ibid</u>., <u>90</u>, 734 (1968).
- 13) H. Prinzbach, V. Freudenberger, and U. Scheidegger, <u>Helv. Chim. Acta</u>, <u>59</u>, 1087 (1967).